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1. The behavior of the turbulence spectrum in the range of high wave 
numbers, corresponding to the range of viscous dissipation, has been 
studied in a number of papers, Up to the present, however, this question 
cannot be regarded as solved. This question is equivalent to the studs 
of the velocity-correlation function for small separations, since the 
correlation function 

Dij (r) = [vi (M) - o* (-WI bj VW - vj (WI 

where r is the separation between the neighboring points M and M’, is 
related to the spectral tensor Qii(~) by the relation 

ob 

Dij fr) = 2 
~~~ 

* (1 - ek’f aij (u) dr, (4) . 
-03 

The tensor Qii is determined’by a unique scalar function - the spectral 
densitY E(K): 

CD&+= gg- pij -2 ) 
In connection with the fact that the present statistical theory of 

turbulence does not provide a closed system of equations for the moments, 
which in principle would permit a solution of the questions mentioned 
above, we are forced to have recourse to various kinds of hypotheses, 
whtch permit an approximate closure of the system of equations for the 

moments of @, :. A detailed survey of these kinds of hypotheses can be 
found in [ 1 1: 

The spectrum of turbulence is known only in the inertial range for 
values of the wave number much lower than the numbers corresponding to 
the internal scale of the turbulence. In this range the spectral density 
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E(K) decreases with increasing wave number, as K- 513. In the range of 
the internal scale, where the action of viscosity becomes apparent, the 
intensity of turbulent pulsations rapidly decays, and the spectrum must 
fall much more quickly. The behavior of the structure function of velo- 
city fluctuations is known not only for scales which are large but also 
for scales which are small by comparison with the internal scale rO = 

&3/r )“4, wh ere v is the kinematic viscosity, 6 is the dissipation of 
energy of turbulent motion per unit mass. If r >> rot then the invariant 
of the structure tensor “ii (its trace) increases with increasing r as 
.2/3 0 When r << rO the trace Dii Q r2. The first attempt to determine the 
structure function throughout the entire range of scale was made by 
Obukhov t2,3 I, who made use of the hypothesis of constancy of asymmetry 

S = D,,, (r) / (D,, (r)P = const, 

The index 1 denotes the projection on the direction r. In the inertial 

range Dill Q r, whilst DLI pu r 213 , so that in fact S= constant. When 
r << r,, the role of the third moments is negligible, and the stated hypo- 
thesis cannot greatly distort the results. In fact, a correlation func- 

tion was obtained with the correct asymptotic forms for large and small 
distances. However, not every function, even if it has the correct asymp- 
totic behavior, ean be a correlation function. 

The fundamental requirement of the correlation function lies in the 
fact that the corresponding spectrum, or more exactly the spectral dens- 

ity, must be positive for all values of the wave number, since it repre- 
sents the density of kinetic energy per unit mass in the wave space. 
Generally speaking, it was previously not clear whether Obukhov’s cor- 
relation function satisfied this requirement, Below in this paper we shall 
carry out the calculation of the spectrum under the hypothesis of con- 
stant asymmetry and shall show that for certain values of the wave number 
the spectrum has negative values. In conclusion we shall compute correla- 
tion functions which correspond to different forms of spectral decay for 
high wave numbers; from these it will be clear that the character of the 
spectrum in this range does not influence the form of the correlation 
function in the corresponding range very strongly. 

2. The hypothesis of constant asymmetry allows one to obtain from 
Kolmogorov’ s equation [ 2.3 I 
correlation function 

where p(x) is the normalized longitudinal correlation function ~~omponents 
of the velocity taken in the direction r), while x is the length taken in 
the definition of the scale. The normalization here is as follows: 

the equation for the determination of the 

6 + (+- f”= x (4) 
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r=klyj- x, 

i > 
D,, = k2 (ve)“’ fi (I) 

‘/i 4 5.035 

Js/=/s” 

The value x = 1 approximately corresponds to the internal scale of the 
turbulence. When x << 1, p = l/2 x2, and when x >> 1, 8 = 3/4 z2’3. In 
the intermediate region Equation (4) is integrated numerically, and the 
graph of the function p(z) is given in [ 2.3 1. 

Let us suppose for the moment that the turbulence is not only locally 
homogeneous but in fact purely homogeneous. Then the following expres- 
sions hold: 

Rii (r) = 
sss 

@ii (x) Pdx 

Qij (x) = i \y\ Rij (r) eeixrdr 

-co 

where R ii(r) and (Pii are the correlation function and the correspond- 
ing spectrum. Let us apply the Laplace operator to Expression (5) and 
then apply the Fourier transform to the result. We then obtain 

ARii (r) esiXrdr (7) 

Completing the series of transformations, using the conditions of iso- 
tropy and continuity, and averaging with respect to angle, we can obtain 
the following formula for the spectral density: 

CO 

xE (x) = - -& \ (r*f”’ + 7rj” + Sf’) sin (xr) dr (8) 
0 

where f is the longitudinal correlation function. Let us make use, more- 
over, of the fact that the derivative of the correlation function f is 
equal to the derivative of the correlation function D.. multiplied by 
(-l/2). Since only the derivatives enter into FormuliJt3), it is true 
also for the case of locally homogeneous turbulence. Introducing the 
normalization quoted above, we obtain 

F (k) E CkE (k) = r (x2 fi”’ -+ 7x p” + 8 p’) sin (ks) dx (9) 
0” 

where C is a certain constant determined by the scale factors, while the 
function p(x) is determined by Equation (4). The left-hand side of this 
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expression is a universal function of the normalized wave number k. 

Let us present certain results of the numerical integration of Ex- 
pression (9); the method of integration is given below in an appendix: 

k 
F (k) : 

0.5 1.0 2.0 5.0 7.5 8.0 
6.1241 4.2704 3.6238 0.1725 -0.0034 --0,0421 

k 85 
P (k) f -0;0097 

9.0 3n 5x IOTC 207E 
0.0029 0.0124 0.0000 -0.0001 0.0000 

The function F(k) first passes through zero when k = 6.5. The accuracy 
of the calculation in the neighborhood of k = 8 is estimated as half a 
unit in the third decimal place (see appendix). Accordingly, the results 
of the calculation testify to the fact that the spectrum of turbulence 
for the hypothesis of constant asymmetry becomes.negative for certain 
values of the wave number, although these negative values are relatively 

Fig. 1. 

This asymptote is represented in the figure by a dotted line. The 
calculated points for k < 1 lie well on this line. When k 2 1 the func- 

small. The rather well-established zeros of 
F(k) for large wave numbers confirm the 
theoretical proposition concerning rapid de- 
crease of the spectrum in the range corre- 
sponding to the zone of viscous dissipation, 
and also provide an indication of the suffi- 
cient accurary and reliability of the rather 
complicated system of calculation of the 
function F(k). In Fig. 1 we present graphs 
of F(k) on a logarithmic sdale - curve 1. 
Curve 2 is the spectrum smoothed according 
to Gauss (see (10) below). When k << 1 the 
following asymptotic expansion holds good: 

tion F(k) rises above the asymptotic line, which indicates that the 
spectral density E(k) falls more slowly than k- 5’3. This also does not 

argue in favour of the hypothesis of constant asymmetry. 

Similar calculations were made for the spectrum of temperature fluctu- 
ations, corresponding to the correlation function defined by the equation 
of Iaglom [4 I, under the hypotheses of constant asymmetry for pulsations 
of velocity and constancy of the coefficient 
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Here IfII and D,, are the correlation functions of velocity and tempera- 
ture. The spectra so obtained also have negative ranges. 

3. Correlation functions for the whole range of scale can be con- 
structed giving a spectrum of turbulence which is positive everywhere. 
The form of the spectrum is known Only for K << 2n/r0. When K ‘30 2?r/ro 
the spectrum rapidly falls to zero, since the intensity of pulsations 
of velocity on these scales falls rapidly as a result of the action of 
viscosity. The decrease of the spectrum according to any particular Power 
law arouses great suspicion, since it would denote that certain high de- 
rivatives of the velocity do not exist. If we assume that all derivatives 

of the velocity exist, then it can easily be concluded that the spectrum 
decreases with increasing K more quickly than any Power of K. A very 
simple form of spectrum, having at the same time a certain theoretical 
basis, is the following: 

where A and Q are certain constants which are specified later. When 
K << K. Expression (10) gives the required form of spectrum. Since the 
Navier-Stokes equations are of parabolic type, the pulsations of velocity 
generated by coarse scale vortices are smoothed in the small scales to 
the Gaussian function (or close to it), which to a certain extent justi- 
fies Expression (IO). 

For the trace of the correlation tensor Dii we have the spectral ex- 
pansion (obtained from (1) averaged with respect to angle) 

Let us transform to the dimensionless variables 

xro = k r = xro, 

Then 

BY suitable choice of the parameters A and a. we can cause the main 
terms of the asymptotic expansiona for x << 1 and x >> I to coincide with 
the c&responding expansions of the trace of the correlation tensor. 
calculated under the hypothesis of constant asymmetry. Both correlation 
functions have identical internal scales* defined as the abscissa of the 
point of intersection of the asymptotes. The integral (11’) is calculated 
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with the help of the known integral [5 1 

co 

s zhwl ePar sin (kx) dx = $ a 

0 

where M is the degenerate hypergeometric function. and employing the 
Principle of analytic continuation to the values of x we require. As a 
result we obtain 

dii (2) = ; Aa”T (+) [M (_ ;- ; ” ; -g) - 11 

The asymptotic expansions of the trace of the correlation tensor ,Bii 
are found with the help of the relations 

where Plr and &, are the longitudinal and transverse correlation func- 
tions. The first few terms of the expansion of @II when x >> 1 are de- 
rived in [ 3 I. The expansion of /!I1 I when x << 1 can be found by integrat- 
ing Equation (4) in series. The leading terms of the expansion 
following: 

P TV 2L z’iP 
r’zt - 4 whenxsl, aii z $ x2 whenxe 1 

Using the known expansions of the degenerate hypergeometric 
we can select the parameters A and a so that the leading terms 

are the 

function, 
of the 

asymptotic expansions coincide. 

The correlation function and the corresponding spectrum have been 
calculated also under the assumption of Tatarskii [6 1 

E (4 = 
Bs”“x--~‘” (x < x,,,) 

o 

(x > Xm) (13) 

The corresponding trace of the cqrrelation tensor can also be calcu- 
lated and satisfied by the choice of the parameters B and K,, necessary 
to the requirements of the asymptotic expansions. 

The results of the calculations for the three different correlation 
functions are as follows: 

31 = 2.5~” (1 - 0.4369 f 0.765~~). 

p2 = 2.52 (1 - 1.034~~ f 1.274x4), nhenx 4 1 

& = 2.59 (1 - 1.184~~ + 1.042~‘). 
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Here 61 is the structure function calculated under the hypothesis of 

constant asymmetry, & is the structure function corresponding to the 
spectrum smoothed according to Gauss and & corresponds to the spectrum 
of Tatarskii. These correlation functions are depicted in Fig. 2. 

When x >> 1 the function & has 
small oscillations arising as a re- 
sult of the steep cut-off of the 
spectrum, but in the figure these 
oscillations are scarcely visible. 

As is clear from the figure, the 
nature of the decay of the spectrum 
for high wave numbers does not affect 
the form of the correlation functions 
very strongly. 

Fig. 2. 

UP to now we have not succeeded 
experimentally in approaching very 
closely to the internal scale of 
turbulence, 

However, new methods of investiga- 
tion, for example, the dispersion of 

sound in a turbulent atmosphere [ 7 I, allow one to hope that the spectrum 
of turbulence can be directly measured even in the region where the 
effect of viscosity is beginning to make itself apparent. Experiment will 
then deotde which of the models is closest to reality. 

Appendix. Let us describe the calculation of the function 

F (k) = 7 (z2~‘” + 7xp” + 8p’) 

CO 

sin (kr) dx z 
s 

f (r) sin (LX) rlz 

0 0 

In principle, knowing the function p(x), from Equation (4) we can de- 
fine also its required derivatives. However, the function p(x) is known 
in the form of a table with a rather small number of values, and the de- 
termination even of the first of its derivatives by this method leads to 
large exrors. Therefore, we are led to seek another approach, 

For x << 1 and x >> 1 we have found the asymptotic expansions 
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These expansions may be used when x d 0.5 and x 2 5.0. For the deriva- 
tive P’(Z) E y(x) we obtain from (4) the equation 

yl = 1 __ 2y (Tc - y)” 

Let us make the substitution: y = x - v312e Then for Y(X) we obtain 
the simpler equation 

21‘ ZZX -$( 2 - 73) 

which can also be integrated by the method of Runge-Kutta for values of 
x from 0.5 to 5.0. Relating p” and p” to V(X) gives the relations 

As a result 

The accuracy of calculation of this expression in the stated interval 
is quite satisfactory. 

For the calculation of the function FO) with different values of k, 
Filon‘s method was used [ 8 1, which is a particular modification of 
Simpson’s method to the case of rapidly oscillating trigonometric func- 
tions. This method was used for values of x from 0 to 5, and since for 
f(x) the asymptotic expression Is known it is not difficult to calcul&e 
the asymptotic representation for the integral from 5 to 00. Precise esti- 
mates of the error of Filon’s method are, generally speaking, unknown. We 
may imagine, however, that it is determined in just the same way as the 
error of Simpson’s method, i.e. it is equal to 1115 of the difference . 
between the values of the integral as calculated, and as calculated with 
twice the interval size. All values of the function F(k) presented in the 
table were calculated with the interval 0.1. The value of F(k) when 
k = 8.0, calculated with interval 0.2, turns out to be equal to - 0.0211. 
Therefore we ~8x1 say that F(8.0) = - 0.0424 f 0.0014. 

In conclusion, I express my thanks to A.M. Obukhov for posing the 
problem and giving advice, and also to L.A. Diky and V.I. Tatarskii for 
useful advice in the process of carrying out the work. 



Structure of turbulence in the small-scale range 1713 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

BIBLIOGRAPHY 

Batchelor. G.K., Teoriia odnorodnoi tarbulentnosti (Theory of lforo- 

geneoae TurbuZence). IIL, 1955. (Russian translation of the 
original, published by Cambridge University Press, 1953). 

Obukhov. A.M., Lokal’ naia struktura atmosfernoi turbulentnosti (Local 
structure of atmospheric turbulence). Dok 1. Akad. Nauk SSSR Vo1.67, 
No. 4. 1949. 

Obukhov, A.M. and Iaglom, A.M., Mikrostruktura turbulentnogo potoka 
(Microstructure of turbulent flow). PMM Vol. 15, No. 1. 1951. 

Iaglom, A.M., 0 lokal’ noi strukture temperaturnogo polia turbulentno- 
go potoka (On the local structure of the temperature field of 
turbulent flow). Dok 2. Akad. Nauk SSSR Vol. 69, NO. 6, 1949. 

Oberhettinger, F., Tabe 1 len zur Fourier Transformation. Springer- 
Verlag, 1957. 

Tatarskii, V.I., Teoriia f liuktuatsionnykh iavlenii pri rasprostra- 

nenii voln v turbulentnoi atrosfere (Theory of the Forr of Fluctu- 

ations in the Propagation of Waves in a Turbulent Atmosphere). 

Itd-vo Akad. Nauk SSSR, 1959. 

Kallistratova, M.A., Eksperimental’ noe issledovanie rasseianiia 
zvuka na turbulentnosti v atmosfere (Experimental investigation of 
the dispersion of sound bs turbulence in the atmosphere). Dokl. 

Akad. Nauk SSSR Vol. 125. NO. 1. 1959. 

Tranter, C. J., Integral’nye preobrazovaniia v Bateraticheskoi fizike 

(Integral Transforms in Mathematical Physics), Section 5.3. GITTI, 
1956,Wssian translation of the original, published by Methuen 
1951). 

Translated by A.H.A. 


